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This is a collection of five technical notes written by Dr. Phillip S. Kott, Chief Research

Statistician of the National Agricultural Statistics Service, in support of the  2002

Census of Agriculture.  They are

A.  Weighting in the 2002 Census of Agriculture

describes how nonresponse weights were computed and integerized.  The note also

discusses sampling weights and re-integerization (a routine to minimize changes from

one integerization to the next).  For a treatment of the calibration program used in

determining coverage-adjusted weights before (re)integerization, see

http://www.fcsm.gov/03papers/fetter_kott.pdf.

 

B.  Smoothing State Farm Counts for the 2002 Census of Agriculture

describes how the number of farms in each state, a primary calibration target, was

determined. 

C.  A Components-of-Variance-Model Estimator for State-Level NML Proportions 

describes computing the number of NML farms (farms not on the Census Mailing List)

within a category used as a calibration target.  The note also discusses variance (and

covariance)  estimation for the fraction of NML farms within a category. 

D.  Mean-Squared-Error Estimates for the 2002 Census of Agriculture

E.  Determining the Attributed and Corrected Fractions of Nonreponse and Under-

coverage Adjustment 

explains how farms that did not respond to either the screening survey or the Census

itself were treated when measuring the extent of nonresponse and undercoverage on

the Census of Agriculture.  

For useful background information of the Census process, see 

http://www.nass.usda.gov/census/census02/volume1/us/us2appxc.pdf.  This US-level

document (there are state-level analogues) is hereafter referred to as Appendix C.  
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Weighting in the 2002 Census of Agriculture

The Weighting Steps for a Census Record

Each in-scope Census record begins with a weight of 1 (a record is in scope if it

represents a unique farm operation).  There are four additional weighting steps for

Census records:

A. Nonresponse weighting  )  a nonresponse weight for record k is denoted by ak.

B. Integerization ) an integerized nonresponse weight is denoted by ak
(I).  

C. Coverage adjustment ) a coverage-adjusted weight is denoted by wk.

D. Re-integerization ) an integerized coverage-adjusted weight denoted by wk
(I).

We will discuss each in turn before moving on to sample reweighting. 

Nonresponse weighting

Every potential operation on the Census list frame (Census mail list) begins with

a weight of 1.  Operations that are designed as musts based on list-frame information 

retain that weight after nonresponse adjustment.   There are three kinds of musts.  

Operations with list-frame total-value-of-products (TVP) or land-on-farm above a state-

dependent cutoff, tagged records (Agricultural-Resources-Management-Study

selections and state-determined specials cases), and abnormals (mostly prison and

research farms).  The term “tagged records” as used here includes many records not

actually tagged during census processing but later determined to be special cases for

weighting purposes. 

Potential operations sent the screening survey (the 2002 Farm Identification

Survey) and responding in scope to that survey are considered on the Census list

frame.  Potential operations sent the screening survey and either not responding or
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responding out of scope are not considered on the Census list frame.  

If a nonrespondent to the screening survey was sent a Census form and

responds in scope, the record receives a nonresponse weight of 1.   NASS’s measure

of undercoverage is affected when a screener nonrespondent responds in scope to the

Census, but that will be discussed elsewhere (Section E).  Late adds – both post-

screener and post-first-Census-mailing – are treated like screener nonrespondents.   

A single operator may have been sent more that one Census form.  (S)he was

required to fill out a separate form for each operation.  When an operator with an

operation for which he had not received a Census form reported the existence of such

an operation on at least one of his received forms,  the newly discovered potential

operation (it may yet be proven out of scope) is an OpDom or OD add.  Each OD add

was sent a Census form or enumerated via telephone.  If it responded, the OD add’s

nonresponse weight is set equal to the nonresponse weight of its donor ) the operation

reporting its existence (if there is more than one such operation, that is, if an operator

fills out two or more Census forms reporting the existence of the missing operation,

then a donor is selected at random from among them).

Some farms operating in more than one county are treated as several distinct 

operations.  When the decision to create an additional record of this sort was made

after the original operation responds to the Census, the split add receives the same

nonresponse weight as the original record.

In-scope records that are not OD adds or split adds are nonresponse weighted

using the following formula:

ak = NNR(k) /RNR(k),                          (A1)

where NNR(k)  is the number of potential list operations in the same nonresponse group

as operation k  not counting those undeliverable as addressed, and RNR(k) is the number

of potential list operations in the same nonresponse group as operation k that return

Census forms (by “return a Census form” or “respond to the Census,” we mean respond

in such a way that NASS can either use the information as a valid record or determine
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that the respondent is a duplicate or a nonfarm; note that data for musts are imputed

from secondary sources if need be).  Both these counts exclude OD adds and include

out of scopes ) nonfarms and duplicates.   Only a single record of an operation

returning multiple forms is considered in scope, however, and receives a positive ak

value.  

Nonresponse (NR) groups are formed within list-frame counties.  An operation’s

list-frame county is the county NASS believes the operation to be in at the time it was

mailed a Census form.  We use list-frame rather than reporting county to form the NR

groups because we do not know the reporting county of the nonrespondents.   

Within a list-frame county, we have the following NR groups:

Group 0: Must records  

Group 1: Expected 2002 TVP (based on list-frame information) less than $2,500 

Group 2: Expected 2002 TVP between $2,500 and $9,999.

Group 3: Expected 2002 TVP between $10,000 and $49,000 and previously

reported survey data from 1997 or later.

Group 4: Expected 2002 TVP greater than or equal to $50,000 and reported survey

data from 1997 or later.

Group 5: Expected 2002 TVP greater than or equal to $10,000 and no reported

survey data from 1997 or later

Any NR group within a list-frame county with less than two respondents

(including duplicates or other out of scopes) or with less than half of the mailed-and-

delivered-to operators responding is collapsed if possible.   The collapsing pattern is:

 

Group 5 to Group 4 or 3 as appropriate

Group 4 to Group 3

Group 3 to Group 4 (call the result Group 3)

Group 3 to Group 5 (if Group 5 is not already collapsed; call the result Group 3)

Group 3 to Group 2
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Group 2 to Group 1

Group 1 to Group 2

Group 2 to Group 3

Group 3 to Group 4.

Group 4 to Group 5.

Stop even if there are less than two respondents or if less than half of the mailed-and-

delivered-to operators respond (Note: the last two steps are done only when less than

half of the mailed-and-delivered-to operators in the left-hand group respond).

Screener respondents with screener-reported sales above the “must” cutoff 

become musts.  A non-must screener respondent (from now on, a “screener

respondent” means an in-scope screener respondent, where the screener itself has

been used to determine in-scope status) is assigned to an NR group based on its list-

frame country and sales category as determined on the screener.

Integerization

We integerize nonresponse weights using systematic probability sampling.  This

consists of the following steps: 

1.  Rewrite each coverage-adjusted weight as ak = a[k] + rk, where a[k] is the largest

integer less than or equal to ak.  In other words, a[k] is the integer portion of ak,

while rk is its remainder. 

2.  Sort the n Census records in a state by reporting county, then by whether or not

the record had crops or livestock on Indian-reservation land, and then by the

Census-reported total land on each record.   Without loss of generality, let us say

that the records are already in this ordering so we can continue to use the same

subscripts. 

3.  Choose a random start point, s, between 0 and 0.999999 from the uniform

distribution. 
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4. For each Census record k, calculate the cumulative sum tk = r1 + r2 + ... + rk.

Let t[n] denote the integer portion of tn.  By definition, t0 = 0.

5.       Call H = {h, h + 1, h + 2, ..., h + t[n]} the “set of hit points.”

6. When cumulative sum, tk, is greater than a hit point, say h + j,  but tk!1 is not, set  

ak
[I] = a[k] + 1.  Otherwise, set ak

[I] = a[k].   

(Note: it is possible for k to be the first Census record with tk > h + j, while tk!1 is the first

Census record with tk!1 > h + j ! 1.  In that case, the integerized weights for both k and 

k !1 would be rounded up.)

The methodology described above assures that the integerized nonresponse

weight for record k must be either a[k] or a[k] + 1.  Moreover, the probability of rounding

up is proportional to rk.   Sorting records by county assures that integerization does not

change the weighted number of farms in a county by more than 1.  Sorting by land

within county likewise assures that integerization does not change the weighted number

of farms in a land-size category in a county by more than 1.  It should also limit the

amount by which integerization can change the weighted total land in a county.
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A Simple Example of Integerization 
                                                         ( with s = 0.4) 

Census Respondent         Nonresponse       Cumulative Sum      Integerized Weights
                                             Weight                                                      (see below) 

     1                1.01            .01              1  
     2                1.10            .11              1  
     3                1.01            .12              1
     4                1.01            .13              1
     5                1.02            .15              1
     6                1.20            .35              1
     7                1.01            .36              1
     8                1.05            .41              2*
     9                1.01            .42              1  
    10                1.01            .43              1
    11                1.01            .44              1
    12                1.02            .46              1
    13                1.01            .47              1
    14                1.01            .48              1
    15                1.30            .78              1
    16                1.30           1.08              1
    17                1.02           1.10              1
    18                1.01           1.11              1
    19                1.01           1.12              1
    20                1.04           1.16              1
    21                1.01           1.17              1
    22                1.10           1.27              1
    23                1.05           1.32              1
    24                1.01           1.33              1
    25                1.01           1.34              1
    26                1.30           1.64              2*
    27                1.01           1.65              1
    28                1.05           1.70              1
    29                1.20           1.90              1  
    30                1.30           2.20              1 

Since s = 0.4, the hit points are 0.4, 1.4, and 2.4.   In this example, all the remainders

are less than 0.5, but the weights of units 8 and 26 are rounded up.  Note that if s were

less than 0.2, there would have been three units with weights that rounded up. 
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Coverage Adjustment

The term “coverage-adjusted weight” is a misnomer because it includes

nonresponse and other adjustments in addition to that for undercoverage of the census

mail list.  Nevertheless, we use it here. 

The coverage-adjusted weights of must records are set at 1.   The remaining

records are adjusted by a complicated mathematical formula that is explained more

fully elsewhere (Fetter and Kott, 2003, http://www.fcsm.gov/03papers/fetter_kott.pdf).  

Each coverage-adjusted weight, wk, falls in the range 1 # wk # 6.   Usually, wk is

no less than the analogous nonresponse weight, ak, but when ak > 1, that need not be

true.    

Re-integerization

To limit the impact of integerization on the difference between aggregates

computed with integerized coverage-adjusted and integerized nonresponse weights, the

following routine, called “re-integerization,” was developed.   The routine can be used 

whenever NASS needs to rerun the program that produces coverage-adjusted weights.

As described below,re-integerization is very similar to integerization except that a

step, 2a, is added:   

1.  Rewrite each coverage-adjusted weight as wk = w[k] + rk!, where w[k] is the largest

integer less than or equal to wk.

2.  Sort the n Census records in a state by reporting county and then by their

Census-reported total land on each record.   Again, without loss of generality, let

us say that the records are already in this ordering so we can continue to use the

same subscripts.  
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2a. Define

rk!! = rk!          when wk $ a[k] + 1 or wk # a[k]

rk!! = 0          when a[k] < wk < a[k] + 1,  rk! < rk,  and ak
(I) = a[k]

rk!! = rk!/rk       when a[k] < wk < a[k] + 1,  rk! < rk,  and ak
(I) = a[k] + 1

rk!! = (rk! ! rk)/(1 ! rk) when a[k] < wk < a[k] + 1,  rk! $ rk,  and ak
(I) = a[k]

rk!! = 1 when a[k] < wk < a[k] + 1,  rk! $ rk,  and ak
(I) = a[k] + 1.

3.  Choose a random start point, s, between 0 and 0.999999 from the uniform

distribution. 

4. For each Census record k, calculate the cumulative sum tk = r1!! + r2!! + ... + rk!!.

Let t[n] denote the integer portion of tn.  By definition, t0 = 0.

5.       Call H = {h, h + 1, h + 2, ..., h + t[n]} the “set of hit points.”

6. When cumulative sum, tk, is greater than a hit point, say h + j,  but tk!1 is not, set  

wk
[I] = w[k] + 1.  Otherwise, set wk

[I] = w[k].   

Drawing a systematic probability proportional to rk!! sample and then rounding up or

down as above creates a set of re-integerized nonresponse weights.  It is unbiased

because the probability of rounding wk up when wk < a[k] + 1  is the sum of the

probability of rounding ak up (i.e., rk)  and the probability of not rounding ak up but then

selecting wk to be rounded up (i.e., [1 ! rk] x [rk! ! rk]/[1 ! rk]).

There is a problem with this approach, however.  Let S be the set of all n census-

respondent operations in a county.   The re-integerized coverage-adjusted total number

of farms, 3S wk
[I], can differ from the total before integerization, 3S wk by more than 1. 

To ameliorate this situation, let S* be the subset of operations in a county containing

those k for which 0 < rk!! < 1.  Set

rk* = rk!! !   [(3S ri!! ! 3S ri!) / 3S* ri!!]rk!! when k 0 S* and 3S ri! # 3S ri!!

rk* = rk!! +  [(3S ri! ! 3S ri!!) / 3S* (1 ! ri!!)](1 ! rk!!) when k 0 S* and 3S ri! > 3S ri!! 

rk* = rk!! when k /0 S*       
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Replacing the rj!! in Step 4 by rj* is close to unbiased (asymptotically equivalent, in fact)

while limiting the potential difference between 3S wk
[I] and 3S wk.                            

 

Sample Weighting 

A sample of Census records contain additional data items for select items either

provided by the operator or imputed by NASS.   See Appendix C, 

http://www.nass.usda.gov/census/census02/volume1/us/us2appxc.pdf, pp. C-1 & C-2.  

Each sample record k has an expansion weight Ek. Sample weighting involves

five steps:

A. Nonresponse weighting  )  a nonresponse weight for record k is denoted by ak. 

B. Coverage adjustment ) a coverage-adjusted weight is denoted by wk. 

C. Sample reweighting   )  a sample weight is denoted by Lk.

D. Integerization ) an integerized (coverage-adjusted) sample weight is denoted by

Lk
(I).

E. Re-integerization ) an integerized nonresponse coverage-adjusted sample

weight denoted (computed for analytical purposes).

Steps A and B have already been described.  For Step C, let sample record, k

have a sampling expansion of Ek.  This value is 1 for certainties (records sampled with

certainty are either musts or in certain list-frame counties) and some other value (2, 4,

6, or 8) for probabilities.  A record’s Ek value depends on its size on the frame and its

list-frame county.  Exactly how Ek is determined is explained elsewhere (see Appendix

C, p. C-2).  

In determining sampling reweighting (SR) groups for the post-stratification

described below, we are concerned with a record’s Census-reported TVP and the

record’s Census-reported county.  Keep in mind, however, that Ek is determined by the

list-frame county of k and its size on the frame.

We divide the sample in a reported county into SR groups based on . The
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largest-size group have size boundaries (based on Census-reported sales and land

cutoffs) that vary by state.  These cutoffs are the same as those employed for

determining musts; now, however, Census values not frame values are used.  Census

records with TVP or land values in the range of the largest size group have sample data

imputed for them if they were not selected for the sample.  They are treated as sample

records in what follows. 

The SR groups as defined within a reported county as follows:

Group 0: The largest size group (includes all “musts” and all records in Alaska and

      Rhode Island) 

Group 1: Other sample records (records not in Group 0) with TVS $ 150,000 

Group 2: Other sample records with 150,000 > TVS $ 50,000

Group 3: Other sample records with 50,000 > TVS $ 10,000 

Group 4: Other sample records with 10,000 > TVS $ 2,500

Group 5: Other sample records with TVS < 2,500.

Let CSR(k) denote the set of Census in-scope records in the same SR group as

k and SSR(k) denote the set of sample in-scope records in the same SR group as k.

We want to create sample weights that produce nearly unbiased estimates of the

Census totals.    This can be done by setting

                                    3j0CSR(k) wj ! 3j0SSR(k) wj

Lk = wk {1  + (Ek ! 1)  ))))))))))))))))))) }              (A2.1)
                                      3j0SSR(k) wj(Ej ! 1)   

    when at least one Ej > 1 for j0SSR(k)  
        

            3j0CSR(k) wj 
     = wkEk   ))))))))))                                                                                            (A2.2) 
                  3j0SSR(k) wjEj                                           otherwise.                                   

Note that the ratio in equation (A2.1) is always non-negative.  Thus, Lk $ wk $ 1. 
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Moreover, this ratio in (A2.1) or (A2.2) has as an expectation approximately equal to 1

when SSR(k) is large enough.  Consequently, Lk . wkEk.    The same is true trivially

when all Ej  in CSR(k) equal 1.  

 Observe that when the Ej in a group are identical, equation (A2.1) collapses to

the more standard form:

                         3j0CSR(k) wj ! 3j0SSR(k) wj

Lk = wk {1  +   ))))))))))))))))))))  }.                                                                 
                                 3j0SSR(k) wj 
                
                3j0CSR(k) wj

    = wk  ))))))))))))  .
                3j0SSR(k) wj       

The same holds true for equation (A2.2). 

We would like all the Ej in a group to be identical.  This desire is not always

realized because some groups contain records from more than one list-frame county,

and list-frame counties can have different sampling rates. 

We never collapse another group into Group 0 or vice versa.   Other than that

restriction, we collapse groups having small sizes in order for the estimators using

equations (A2.1) or (A2.2) to be nearly unbiased.  In what follows, an SR group is

defined to be small if it contains less than six sample records OR if it has at least one

but less than six sample records with Ej > 1   (we need at least six non-zero values

within the summation in the denominator of (A2.1) and (A2.2)).    

These steps are to be done in order:

1.  If Group 1 is small, collapse its records into Group 2 (1 ceases to exist).

2.  If Group 2 is small, collapse its records into Group 3 (2 ceases to exist).

3.  If Group 3 is small, collapse its records into Group 4 (3 ceases to exist).

4. If Group 4 is small, collapse its records into Group 5 (4 ceases to exist).
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5. If Group 5 is small, collapse its records into the next smallest group still existing

but not into Group 0. 

6. If Group x is small and the only remaining group other than Group 0, use it.

In invoking the last Step, we abandon near unbiasedness, because the sample in the

county is too small for that property to have meaning.  We still force the sample and

census number of farms in the county to be equal.  (This strict equality is lost, however,

when the census and sample weights are integerized.)

We do not collapse into Group 0 because we do not want a record in that group

ever to have a sample weight greater than 1, which could happen in a collapsed group

when every ej = 1 and equation (A2.2) is used.  

Integerizing and re-integerizing Sample Weights

A nonresponse-adjusted-only sample weight, Dk, is calculated in an analogous

manner to Lk in equations (A2.1) and (A2.2) with ak (and aj) replacing wk (and wj).  

These weights are integerized using the same methodology as the nonresponse

weights ! with Dk replacing ak ! and then re-integerized with Lk replacing wk (and again

Dk replacing ak). 
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           Smoothing State Farm Counts for the 2002 Census of Agriculture

The direct estimates of the 2002 farms counts (census + nonresponse + NML)

for many states were statistically unreliable.   This note first describes one possible

method of smoothing  those estimates to be closer to previously published NASS

values, called  “Board numbers.”   An alternative method, described afterwards, was 

used for the 2002 Census of Agriculture with only small modification.  

Let i denote a state (or New England treated like a single entity), and let Bi be the

Board value for the number of farms in the state.  Let Ti be the farm count for the state

based on the Census of Agriculture (respondent-adjusted list plus NML), hereafter

called the “Census number.”   

A potential smoothed estimate for the farm count in State i is 

Mi = (1 ! 8i)Ti + 8i Bi ( 3 8jTj / 3 8jBj),                                                                             (B1)

where the summations are over all states.   Determining the smoothing factor, 8j, for

each state j, a value between 0 and 1, is the centerpiece of this note.    

Equation (B1) has several nice properties: 

A. 3 Mi = 3 Ti , no matter the choice for the 8i.  

B. At one extreme (when 8i = 0), Mi = Ti .

C. At the other extreme (when 8i = 1), Mi =  Bi ( 3 8jTj / 3 8jBj), which is close to Bi

when   3 8jTj / 3 8jBj is close to 1.  

The smoothing factors can be determined ideally under a  model like 

E(Ti)/Bi = : + *i,                                                                                                           (B2) 

   

where the *i are independent random variables with mean zero and variance F2.  The

value E(Ti) is unknown.  It is the expectation of Ti with respect the sampling done when
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estimating its NML component (the expectation can “average out” nonsystematic

measurement-error within each state).  

In this first setup, Bi is treated as fixed, and the goal is to estimate 2i = E(Ti) =

Bi(: + *i) for each i.  Note that *i is formally a random component, not an error. 

Effectively, however, it is a quantification of the random, state-level measurement error

in Bi, while the difference between : and 1 quantifies the systematic measurement error

across all the Bi.  

Suppose we knew F2 and the sampling variance for each Ti (which we assume

comes entirely from the NML).  Call the latter Vi
 2.  Then the ideal value for 8i is  

8i
IDEAL . Vi 

2 /( Vi 
2 + Bi 

2F2).   

In practice, Vi 
2 can be replaced by an estimate of the variance of Ti.  Call it vi 

2. 

It is helpful to denote the pseudo-CV of ti, vi /Bi as cvi (“pseudo” because the division is

by Bi instead of Ti).  Given an estimator for F2, call it s2, a good choice for 8i is 

gi = cvi 
2 /(cvi 

2 + s2).                                                                                                      (B3)

An unbiased estimator for F2 is  

s2 = { 3 (Ti /Bi)
2 ! [ 3 (Ti /Bi)]

2 /n}/(n !1) ! 3 cvi 
2/n.                                                       (B4)

The Preferred Alternative

In the preferred alternative method, a state (or New England) Board number, Bi,

is still assumed to be a fixed predictor of the true number of farms in State i, 

2i = Bi(: + *i) (see the discussion surrounding equation (B2)), where *i is effectively a

quantification of the random state-level measurement error of the Board number.  

The sampling expectation of a Census number, Ti, averages out the effects of

unit-level nonsystematic measurement error with state i.  There remains, however, a
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potential for systematic measurement error in E(Ti).   

The alternative method described below assumes that state-level measurement

error in E(Ti) has zero mean; that is, it “averages out” across the states.  Moreover, it

has the same variance as *i (i.e.,  it is no more precise than Bi).  Formally, the assumed

model is 

E(Ti)/Bi = : + *i + ,i,

where E(*i) = E(,i) = 0,  E(*i 
2) = E(,i

 2) = F2/2, and the target of estimation is Bi(: + *i).

Equation (B4) again provides an unbiased estimator for F2, while a good choice

for 8i is now 

gi = (cvi 
2 + s2/2)/(cvi 

2 + s2).                                                                                          (B5)

Although it is possible to estimate the variance of Mi = (1 ! gi)Ti + gi Bi ( 3 gjTj / 3 gjBj)

under this model and choice for gi, a prudent course of action, which was largely

adopted, is to use the estimated variance for Ti as a conservative indication of the

variance for Mi.  

Since NASS is confident that none of its estimated state farm counts are off by

more than 10%, the largest the estimated variance for Mi was allowed to be was

(.01)Mi
2.    That is to say, NASS uses max{vi

2, (.01)Mi
2} as the variance estimator for Mi

in the 2002 Census of Agriculture.  
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A Components-of-Variance-Model Estimator

for State-Level NML  Proportions 

This note describes the estimator for a state-level NML proportion like the fraction

of farm operations with horses.   By multiplying this proportion by the (smoothed)

estimate of NML farms in a state and adding it to the nonresponse-adjusted census

total, NASS computed the calibration target for the number of farms in the state with

horses.

Let i denote a state  (i = 1, .., T) and k an NML farm within the state (New England

is treated as a state).   If yik is the 0/1 item value of interest for farm k in state i, and Wik

is the farm’s sampling weight (including the tract-to-farm ratio), then the usual estimator

of the state NML proportion for the item (or, more precisely, of the fraction of farms

having an item value of 1) is 

  
yi = 3k0S(i) W ik yik / 3k0S(i) W ik  =  3k0S(i) wik yik,                                                                     (C1)

where S(i) is the NML sample of farms in state i, and wik = Wik /3h0S(i) W ih,

For most of this note, we ignore the fact that some yik are imputed with values

between 0 and 1.   When we finally estimate the variance of the proposed composite

estimator of a proportion, we adjust for this ignorance. 

The usual estimator for the US-level NML proportion is 

y = 3T  W i yi / 3
T  W i ,                                                                                                      (C2)

where Wi =  3k0S(i) W ik .  We assume here that the mean sqared error of y, unlike yi, is

acceptably low.

Let ci be the estimated proportion of the item in the state derived from the Census

list (adjusted for nonresponse).  It is convenient to define di = yi /ci (which means we

have to remove any state with ci = 0 from T) and rewrite yi  as yi = ci di .

We focus our attention on an estimator for the state NML proportion of the form
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   zi = ci [(1 !8i)di + 8i 3
T fj dj] 

        = ci [(1 !8i)di + 8i d] ,                                        (C3)

where d = 3T fj dj , and the fj are arbitrary factors that sum to 1 (i.e., 3T fj = 1). 

When 8i = 1, equation (C3) replaces the state-specific estimator of the ratio

between the NML and census proportions, di, with a pooled estimator of this ratio, d.  

When 8i takes on a value between 0 and 1, the equation compromises between using di

and d. 

Later, we choose specific values for the fj that have useful properties.  We cannot

compute d until we choose values for the fj.  With this in mind let 

d(0) = 3T widi , 

where wi = Wici /3
T W jcj. 

The Components-of-Variance  Model     

In order to determine a good value for 8i, we posit this components-of-variance (or

random-effects) model for the dik = yik/ci :  

dik = : + 0i + ,ik ,

where E(0i) = E(,ik) = 0, and all the 0i and ,ik are uncorrelated, Var(,ik) = Fi
2, and 

Var(0i) = FB
2.   The interested reader will observe that this model treats the dik  within

state i as random variables with a common mean, : + 0i.  These state means

themselves have a common mean, :, and variance, FB
2.  Note that it is the ratio between

the state NML and census proportions of the item of interest that is being modeled

rather than the NML proportions themselves.  Modeling ratios in this way is statistically

identical to modeling percentage differences. 

Our goal is to estimate Yi = 3U(i) yik /Ni , where U(i) is the set of all Ni NML farms,

whether or not in the sample, in state i.  Observe that Yi = ciDi, where
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Di = 3U(i) dik /Ni.  For all practical purposes,  Di =  : + 0i + 3U(i) ,ik /Ni can be approximated

by Di . : + 0i.  Thus, the (model) variance of di = 3S(i) W ikcidik / 3S(i) W ikci =  3S(i) wikdik as an

estimator for Di is

E[(di !Di)
2] . ( 3S(i) wik

2) Fi
2

                     = Vi (this defines Vi).

Generally, Vi decreases as the sample size of S(i) increases. 

We treat the yik as if they were generated by a Bernoulli process with mean Yi. 

Consequently,   Var( yik | Yi) = Yi(1 ! Yi),    Var( ,ik) = Yi(1 ! Yi)/ci
2, and 

Vi = ( 3S(i) wik
2 ) Yi(1 ! Yi)/ci

2.

 

Rather than dealing with the model variance of d as an estimator for D, it is more 

convenient to examine the properties of 

d(i) =  3j� i fj dj /(1 !fi), 

which has mean : and is uncorrelated with both di and Di.  This random variable relates

to d and di through

d = fidi + (1 !fi)d(i) .

It is also useful to observe that di !d = (1 !fi)(di !d(i)).

The estimator zi in (C3) can be rewritten as 

zi = ci [(1 !8i*)di + 8i*d(i) ],                (C3*)

where  8i* =  8i(1 !fi).  We use this later.

The variance of d(i) as an estimator of Di is

    E[(d(i) !Di)
2] = 3j� i fj

2(Vj + FB
2)/(1 !fi)

2 + FB
2.
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In practice, we do not know the values for the Vi
2 and FB

2 and need to estimate them

from the sample.   Assuming (initially) that each Yi is approximately equal to cid
(0) , this

can be done with 

vi
(0) =  3S(i) wik

2 cid
(0) (1 !cid

(0) )/ci
2, and

                                     (C4)
b     =  [ 3T wi (di !d(0))2 !3T wi (1 !wi)vi

(0)] / [1 !3T wi
2]. 

Choosing Parameters 

An obvious thing to do is to choose the fj and 8j so that the variance for each zi is

minimized.  Given a set of fj, we have 

Var(zi) = ci
 2{ (1 !8i*)

2Vi + ( 8i*)
2 3j� i fj

2(Vj + FB
2)/(1 !fi)

2 + FB
2.                                      (C5)

Setting the derivative of the right-hand size of equation (C5) with respect to 8i* equal to 0

and then solving for the optimal 8i* yields:

 

8i*OPT = Vi
 / [Vi

  +  3j� i fj
2(Vj

  + FB
2)/(1 !fi)

2 + FB
2].                                                   

If all the fj are small, and FB
2 is not too small, then 

8i A.OPT . 8i*A.OPT   .  Vi
 / [Vi

  + FB
2]                         (C6)

is approximately optimal no matter what the choice for the fj.

One property we would like the zi to have is that their weighted mean, 

3T W i zi / 3
T W i , equal  y = 3T W i yi / 3

T W i , because, at the aggregate level, y is a good

estimate.   Given any set of 8j, this requirement when applied to equation (C3) forces 

fi = Wici8i / 3
T W jcj8j.                (C7) 
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In practice, we can implement neither equation (C6) nor (C7) because the Vi and

FB 
2 are unknown.  Instead, they are estimated with 

vi* = vi
(0) ,

b* = max{b,  ½ 3T wi (di !d(0) )2},

so that equations (C6) and (C7) become

li . vi*
 / [vi*

  + b*],    and                                                           (C6')

fi = W ici li / 3
T W jcj lj.                (C7') 

Consequently, this chosen version of  zi  

z i
C  = (1 !li)yi + li(cid)                                                    (C8)

is approximately optimal.

Variance Estimation and Confidence Intervals

We now discuss variance estimation for zi
C and confidence interval construction

for Yi.  First, we put  zi
C in a form that simplifies the variance derivation:

zi
C  = (1 !li[1 !fi])yi + li[1 !fi]cid(i).       

Treating the li as fixed, the variance of zi
C is roughly:

 Var(zi
C)  = (1 !li[1 !fi])

2 Vi + ( li[1 !fi]ci)
2 { 3j� i fj

2(Vj + FB
2)/(1 !fi)

2 + FB
2}.
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We can again estimate FB
2 with b or b* as appropriate.  For Vj, however, we now suspect

that zj
C is a much better guess at Yj than cid.  Consequently, we can compute

vj
(1) = ( 3S(j) wjk

2 ) zj
C (1 !zj

C)/cj
2.                                                                                  

At this point, let us offer an ad hoc adjustment for the fact that some of the yik may

be imputed.  Let Tjk = wjkRjk/ 3h0S(j) wjhRjh, where Rjh = 1 when yjh is a reported value and 

Rjh = 0 when it is imputed.  We replace vj
(1) above with 

vj
(1) = ( 3S(j) Tjk

2 ) zj
C (1 !zj

C)/cj
2.                                                                                       (C9) 

Equation (C9) leads to the variance estimator:    

var(z i
C)  = (1 !li[1 !fi])

2 ci
2 vi

(1) + ( li[1 !fi]ci)
2 { 3j�i fj

2(vj
(1) + b)/(1 !fi)

2 + b*}.           (C10)

We can construct a two-sided, Wilson-like confidence interval for Yi by solving

          
                                       (zi

C !Yi)
2

  ))))))))))))))))))))))))))))))))))))))))))))))))   # t2,                        (C11)
  (1 !li[1 !fi])

2 ci
2 Vi + ( li[1 !fi]ci)

2 { 3j� i fj
2(vj

(1) + b)/(1 !fi)
2 + b*}

for Yi , where t is the relevant z-score (i.e., 1.96 for a two-sided 95% confidence interval). 

 The left hand side of equation (C11) is the square of the Wald pivotal for zi
C as an

estimator for Yi except that Vi replaces vi
(1) (note: when x is an unbiased estimator for X,

the Wald pivotal for x is [x !X]/¾var[x]). 

Recall that ci
2Vi = ( 3S(i) wik

2 ) Yi(1 ! Yi).    For convenience, we set

 

"i = (1 !li[1 !fi])
2 3S(i)w ik

2, and 

$i = ( li[1 !fi]ci)
2{3j�i fj

2 (vj
(1) + b)/(1 !fi)

2 + b*},  
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so that  var(zi
C)  = "i zi

C (1 !zi
C) + $i.    Equation (C11) can now be rewritten as 

        (zi
C !Yi)

2

  )))))))))))  #  t2    or     
   "iYi(1 !Yi) + $

(zi
C)2  ! 2 zi

CYi + Yi
2  ! t2 "iYi  + t2 "iYi

2 !t2 $i  #  0

{1 + t2"i}Yi
2  !{2 zi

C + t2 "i}Yi + {(zi
C)2 ! t2 $i} #  0.                         (C12)

Solving equation (C12) when equality holds yields (recall that if 

Ax2 + Bx + C = 0, then x = [ !B ± ¾{B2  !4AC}] / [2A]):

           2 zi
C + t2"i ± [{2 zi

C + t2"i}
2  ! 4 {1 + t2"i}{(zi

C)2 ! t2 $i}]
1/2 

Yi  =  )))))))))))))))))))))))))))))))))))))))))))
                                            2 {1 + t2"i} 

           zi
C + t2"i(½)  ± [{ zi

C + t2"i/2)}2  ! {1 + t2"i}{(zi
C)2 ! t2 $i}]

1/2 
     =  ))))))))))))))))))))))))))))))))))))))))))))))
                                                 1 + t2"i 

             zi
C + t2"i(½)  ± [zi

C (1 !zi
C)]t2 "i +  t4 "i

2 /4 +  {1 + t2"i}t
2 $i}]

1/2 
     =     )))))))))))))))))))))))))))))))))))))))))))))))
                                                    1 + t2"i 

             zi
C + t2"i(½)           t [var(zi

C)  +  t2"i
2 /4 + t2"i$i]

1/2 
     =     )))))))))))   ±    ))))))))))))))))))))))                                             (C13) 
                 1 + t2"i                             1 + t2"i 
    

Equation (C13) defines the endpoints of a two-sided confidence interval for Yi .  It

is interesting to note that the center of this interval (the first term on the right) is a

weighted average of zi
C and ½.   That is to say, when  t2"i <1, which is almost certainly

the case, the center will between zl
C, the standard center of a two-sided interval and ½.  
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The second term on the right in equation (C13) is likely to be close to var(zi
C).   

Categories 

So far in this paper we have estimated related fractions, like those of the NML

operations in particular sales classes, independently of each other.   As a result, if there

are G mutually exclusive and exhaustive categories (like sales classes or age groups) in

a state, then the estimated fractions across the category need not sum to 1.  That is to

say, when zgi
C is the estimate for the fraction of NML farms in  category g (=1, ..., G)

derived from equation (C8) (with the subscript g added to denote the category), there is

no reason for  3G zgi
C to equal 1.  

The following iterative method should produce revised fractions,  zgi
R, that sum

both ways; that is, across category (g):  3G zgi
R = 1, and across states (i):  

3T W izgi
R = 3T W iygi .  We begin by computing lgi

(1) and fgi
(1) using equations (C6') and

(C7'), respectively for each category g (again adding the subscript g as appropriate).  Let 

            T 
dg+

(r) =  3
   fgi

(r)dgi.                                                                                                          (C14)
           i=1

for a particular set, where r can be 1, 2, etc.   In addition, let 

lgi
(r+1) =   Lgi

(r+1)

if   0 # Lgi
(r+1) # 1

      =   1       if   Lgi
(r+1) > 1                                                                                  (C15)

     =   0       if   Lgi
(r+1) < 0, 

where

                                 G                                  G
Lgi

(r+1)   =   lgi
(r)  !  {[ 3  lhi

(r)(yhi ! chidh+
(r))] / 3   *yhi ! chidh+

(r)*} sgn(ygi ! cgidg+
(r)), 

                                h=1                             h=1

and sgn(x) = 1 when x > 0, !1 when x < 0, 0 otherwise.

And 
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                                 T
 fgi

(r+1) = W icgi lgi
(r+1)/  3  W jcgj lgj

(r+1).                                                                       (C16)
                                 j=1
   

After several iterations (say r = 4), we have

zgi
R  = (1 !lgi

(r))ygi + lgi
(r)(cgidg+

(r))  =  ygi + lgi
(r)(cgidg+

(r) ! ygi).

Equation (C14) calculates the dg+ is such a way that the zgi
R sum across states (i.e., 

3T W izgi
R = 3T W iygi for each g). Equation (C15) forces the zgi

R to sum to 1 across

categories (for each state i).  Iteration may be necessary because doing one can undo

the other.  Equations (C14) and (C16) are mild generalization of previous formulae. 

Equation (C15) attempts to minimize the largest absolute change among the lgi across

iterations in such a way that the zgi
R sum to 1 across classes, while all the lgi remain

between 0 and 1.  

We can estimate the variance of zgi
R and compute its confidence interval using

the same methods we developed for zi
C substituting  zgi

R  and lgi
(r) (for sufficiently large r)

as appropriate in equations (C9) through (C13).   

Covariance Estimation

Let P be the number of fractions for which NASS estimates proportions to use in

its calibration program.  Let zpi
C (or zpi

R) represent the estimator for the pth fraction in

state i, and ypik be the p value (reported or imputed) for farm k in state i.

We define 

Dpqi = 3k0S(i) w ik(ypki ! ypi)(yqki ! yqi) / {3k0S(i) w ik(ypki ! ypi)
2 3k0S(i) w ik(yqki ! yqi)

2 }½, 

where ypi =  3k0S(i) wikypki.
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A reasonable, if ad hoc, estimator for the covariance between zpi
C and zqi

C 

(replacing C by R when the fraction uses the revised estimate) is 

cov(zpi
C, zqi

C) = Dpqi {var(zpi
C)var(zpi

C)}½,                                                                        (C17)

where var(zpi
C) is defined by equation (C10).   Note that when p = q, cov(zpi

C, zqi
C) =

var(zpi
C).
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             Mean-Squared-Error Estimates for the 2002 Census of Agriculture

This note describes how mean squared errors are estimated in all states except

Alaska and Hawaii.   Weights in neither of these states compensate for coverage errors.  

Only Hawaii has weights adjusted for nonresponse.  A discussion of how mean squared

errors are calculated in Hawaii is reserved for the end of this note.  

There are many sources of error in the 2002 Census of Agriculture.  We focus

here on creating combined mean-squared-error measures for (up to)  four of those:

A. Reweighting for nonresponse, 

B. Coverage adjustment,

C. Integerization, and

D. Sampling. 

The last source of error applies only to sample numbers.   In restricting ourselves to

these four, we assume that all the data on all Census records are correct, including

those from secondary sources and imputation.   The measures discussed here are,

mean-squared-error (mse) estimates rather than variances because they capture the

additional error arising from  integerization and (when deemed appropriate) using biased

calibration targets.

Effectively, NASS adjusts for measurement error in the calibration process while it

adjusts for undercoverage.  Nevertheless, we use the term “coverage-adjusted” number

here.  In the formulae discussed here, we ignore both the contribution to mse caused by

measurement error and the potential reduction of mse due to calibration on  quantitative

commodity and land-in-farms targets.     
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Three Types of Census Numbers

There are three different types of Census numbers of concern to us here.  Each 

requires a different approach.  The types are 

1. Nonresponse-adjusted Census numbers (pre-integerized) 

2. Coverage-adjusted Census numbers

3. Coverage-adjusted sample numbers

Nonresponse-Adjusted Census Numbers (before Integerization)

Let Ug (or Ug) denote a nonresponse group (g = 1, ..., G), and let rg denote the

number of Census respondents in g (rg counts both in-scope and out-of-scope records).   

The variance/mean-squared error (mse) estimate for ty = 3U akyk has the form: 

 

mseN(ty) = 3G (1 ! [1/a(g)])[rg /(rg !1)][ 3k,Ug (akyk)
2 ! (3k,Ug akyk)

2 /rg],                               (D1)

where 

U is the set of n Census records in the state, 

yk is the value of interest for record k, 

ak
is the nonresponse weight for record k before integerization, and 

a(g) is the common value of ak for all records in nonresponse group g.

The expression on the right of equation (D1) is the standard variance estimator

under the all-form-recipients-within-a-group-are-equally-likely-to-respond assumption,

although not in the form one usually sees it.  

For a county-level aggregate (e.g., the total land in county q), yk is defined to be

positive only when k is in the county of interest.   When estimating a farm count, yk is

defined to be either 0 or 1.  For convenience, we define xk =1 for all in-scope records, so

that tx = 3U akxk is the nonresponse-adjusted estimate of the number of farms in the state
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(before integerization). 

Coverage-adjusted Census Numbers 

Subsequent to the initial run of the calibration program that created the coverage-

adjusted Census weights in each state, there were a number of data fixes.  After that, a

second run of the program was undertaken treating the calibration weights from the first

run as the nonresponse weights.  The quasi-randomization theory underlying the mean-

squared error estimation described below pretends there was only one run of the

calibration programs.  

Suppose we have a coverage-adjusted Census total for a calibration state of the

form ty
C = 3U wk

(I)yk, where wk
(I)   is the integerized coverage-adjusted weight for record k. 

Likewise, wk is the coverage-adjusted weight before integerization. 

Let P be the number of demographic variables actively targeted in either run of

the calibration program when computing the coverage adjusted weights.  The calculation

of P excludes the simple count variable, which is 1 for all farms.   It also excludes those

demographic variables which were deemed in range without specific targeting in both

runs of the calibration program.  

For each farm k, let zk denote a row vector of Q demographic calibration variables

associated with k not counting the indicator variable for “extreme operators” or EO’s. 

These Q variables are often be the P actively targeted demographic variables; however,

we need to drop one economic-size variable if all such variables are targeted and one

age variable if all such variables are targeted (to avoid a singularity).   

Let gk = (1, zk), and ZT be the targeted sum of the zk; that is, the vector of original

targeted totals for the demographic variables.  Furthermore, let zT = ZT /X be the vector

of proportions associated with ZT, where X is the targeted number of farms. 

Sometimes, the calibration programs use a target that is at the boundary of the

acceptable range.  The components of ZT are all original values and not boundary

targets.

We now define
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b   =  ( 3U* akgk' gk)
-1 3U* akgk' yk = (b0, bz')',             (D2.1)

ek  =  (yk ! gkb)(n(/[n( ! Q ! 1])½,                                                                              (D2.2)

where

U*     the subset of U containing only records, k, such that wk > 1 and wk < 6, and

n(     the number of records in U*. 

The (n(/[n( ! Q ! 1])½ factor in the definition of the residual, ek, is an ad hoc

compensation for b being an estimated value. 

We could estimate the contribution to the mse of ty
C caused by coverage-

adjustment (last line) and NML estimation of calibration targets (first two lines) as   

mseC(ty
C)    =   varNML_x(b0 + zTbz)

2 + 

                   XNML
2bz' COV bz + X2(bias bz)

2

                    3U wk(wk ! ak)w$a ek
2,                                                                               (D3)

  

where     

XNML     is the estimated total of farms in the NML,  

X     is the total number of farms in the state,

varNML_x   is the estimated variance of the total farm number estimate from the NML,

bias     =  ( 3U wkzk / 3U wk) ! zT, and 

COV       is the Q x Q matrix whose p,qth term is the estimated covariance of

    smoothed proportion estimators described in equation (C17). 

(wk
  ! ak)w>a =  wk ! ak when wk $ ak, 1 otherwise.   
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A farm may be on the Census list more than once without our knowing it.   When

ak/wk # 1, we estimate the variance of the number of times farm k is on the list with

(ak/wk)[1 ! (ak/wk)].  When ak/wk > 1, we estimate that variance conservatively with ak/wk. 

In the former case, we assume that the number of times farm k is on the list cannot

exceed 1, and ak/wk is simply the probability k is on the list.   In the latter case, we

assume that the number of times k is on the list is a random variable with mean np and

variance np(1 ! p), where n and p are unknown, but np is estimated by ak/wk, so 

np(1 ! p) which is bound above by np, is conservatively estimated by ak/wk.

Also on the conservative side, equation (D3)  ignores quantitative calibration

targets such as farm land and whatever mean-squared-error reducing power these

targets provide.   In addition, the smoothed number-of-farm targets used in calibration

should have less variance than varNML_x.     

 There is a another term in the estimation of the mse of ty
C contributed by the

adjustment for nonresponse.  It is 

mseN(ty
C) = 3G (1 ! [1/a(g)])[rg /(rg !1)][ 3k,Ug (akyk

C)2 ! (3k,Ug akyk
C)2 /rg],                          (D4)

where yk
C = yk + [(wk /ak) ! 1]ek.  Part of mseN(ty

C) (the part associated with yk ! ek) is the

contribution of mse due to the list component of the estimated calibration target vector. 

The rest captures the impact of nonresponse weighting on the residual before coverage

adjustment.   

The total mse for an integerized coverage-adjusted Census number,  

ty
C(I) = 3U wk

(I)yk can be estimated with 
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mseT( ty
C(I)) = mseC( ty

C(I)) + mseN(ty
C),                                                                           (D5)

where mseC( ty
C(I)) is modified from mseC( ty

C) in equation (D3) to capture the impact of

integerization like so:

mseC(ty
C(I))    =   varNML_x(b0 + zTbz)

2 + 

                   XNML
2bz' COV bz + X2(bias(I)bz)

2

                    3U wk
(I)(wk

(I) ! ak)w$a ek
2,                                                                         (D3(I))

 

where

bias(I)    =  ( 3U wk
(I) zk / 3U wk

(I)) ! zT, and 

(wk
(I)   ! ak)w>a =  wk

(I)   ! ak when wk $ ak, 1 otherwise,

The contribution of coverage to total mse adjustment, including for practical

purposes, integerization  is 

RC = mseC( ty
C(I))/mseT( ty

C(I)) 

        = mseC( ty
C(I))/[mseC( ty

C(I)) + mseN(ty
C)],                                                                    (D6)

If the right-hand side of equation (D6) is negative, RC is changed to zero.  See the

appendix of this note.    

The computed values for RC as described above appear in percentage form in the
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last column of Table B in

http://www.nass.usda.gov/census/census02/volume1/us/us2appxc.pdf 

and its state-level analogues,* which we have called Appendix C. The contribution of

nonresponse adjustment to total estimated mse  – also displayed in percentage form on

Table B – is (1 ! RC).

Coverage-adjusted Sample Numbers 

Coverage-adjusted sample numbers like ty
S = 3S Lk

(I)yk, where S is the set of

sample records in a state, and Lk
(I) is the integerized sample weight for k, have three

mse components: the original nonresponse adjustment, the coverage adjustment and

the sample adjustment. 

Since yk is unknown for census records not in the sample, when estimating the

contribution to mse of coverage adjustment and NML estimation,  we modify equations

(D2) and (D3) like so: 

bS   =  ( 3S* akEkgk' gk)
-1 3S* akEkgk' yk = (bx

S, bz
S')',            (D2.1S)

ekS  =  (yk ! gkb
S)(nS/[nS ! Q ! 1])½,                                                                          (D2.2S)

______
For a state-level analogue replace the repeated ‘us’ in ‘us/us2' with the appropriate state
abbreviation; for example, the URL of Appendix C for Nebraska is
http://www.nass.usda.gov/census/census02/volume1/ne/ne2appxc.pdf 
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mseC(ty
S)    =   varNML_x(bx + zTbz

S)2 + 

                  XNML
2bz

S'(COV + BIAS2)bz
S +

                   3S Ekwk(wk
  ! ak)w$a ekS

2,                                                                       (D3S)

where 

S* is the subset of S containing those records, k, such that such that wk > 1

and wk < 6, 

nS is the size of S*, and 

Ek is the inverse of the sampling rate used for k (e.g., if k was sampled at a

one-in-six rate, then Ek = 6), which is set to 0 when k is not in the sample.

An estimate of the mse component from the original nonresponse adjustment is 

mseN(ty
S) = 3G (1 ! [1/a(g)])

                     {[rg /(rg !1)][ 3k,Ug (akyk
S)2 ! (3k,Ug akyk

S)2 /rg] !  3k,Ug [Ek
2 ! Ek)wk

2ekS
2},      (D7)

where yk
S =  gkb

S + Ek(wk /ak)ekS is defined for all of U (it is moot that ekS is unknown for k

not in the sample, since Ek = 0 for such records).  The last term is a bit ad hoc.   It

attempts to remove the added noise from using sample values within the nonresponse-

variance calculation. 

Let Sh (or Sh) denote the subset of all sample records in sample reweighting



D9

group h (h = 1, ..., H) after collapsing.  An estimator for the mse component of ty
S due to

sampling and integerization is

mseS(ty
S(I)) = 3S Lk

(I)(Lk
(I)  ! wk)uk

2,                                                                      (D8)

where 

uk     =   [nSh /(nSh ! 1)]1/2 (yk ! Rh
S ) for k 0 Sh, 

nSh          is the number of operations in Sh, and  

Rh
S     =  3Sh Lk

(I)yk / 3Sh Lk
(I).  

(Note: In the rare situation where nxh = 1, set uk = yk /¾2.  This is not unbiased, but it is

reasonable, and we need to do something.)

The estimated total mean squared error for a sample number is  

mseT( ty
S(I)) = mseC( ty

S) + mseN(ty
S) + mseS(ty

S(I)).                                                          (D9)

The square root of this value is the estimated root mean squared error for a sample

number, which is displayed on Table B of Appendix C.    The contribution from coverage

adjustment, which in this form excludes integerization,  is 

RC = mseC( ty
S)/mseT( ty

S(I)),                                                                                         (D10) 

                    

which is displayed on Table B in percentage form, along with the contribution from
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nonresponse adjustment and sampling, 1 ! RC.

Hawaii

For Hawaii, mse’s were estimated using the simple formula: 

mseH(ty
(I))   = 3U ak

(I)(ak
(I) ! 1)yk

2. 

The theory behind this is that each farm has an independent probability of response

approximately equal to 1/ak.  In addition, ak
(I) is a random variable with mean ak.   

US-level Mean Squared Errors 

Although there were correlations in the estimates of state-level targets due to

smoothing in area-farm based values, these correlations were ignored when computing

US-level mse’s.  Moreover, biases were treated as components of variances, so that an

mse at the US level was estimated as the sum of the corresponding  mse’s at the state

level.
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Appendix ! A slight improvement on equation (D3(I)) is

mseC(ty
C(I))    =   varNML_x(b0 + zTbz)

2 + 

                   XNML
2bz' COV bz + X2(bias(I)bz)

2

                    3U wk(wk ! ak)w$a ek
2 + 3U [ |wk

(I)   ! wk| ! (wk
(I)   ! wk)

2] ek
2 . 

Unlike equation (D3(I)), the above expression doesn’t rely on wk
(I)2 estimating its

xpectation, and cannot be negative.    

Similarly, a slight improvement on equation (D8)  is 

mseS(ty
S(I)) = 3S Lk(Lk ! wk)uk

2   +  3S [ |Lk
(I)  ! Lk| ! (Lk

(I)  ! Lk)
2] uk

2.

Neither of these improvements were incorporated into the 2002 calculations.
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Determining the Attributed and Corrected Fractions of 

Nonreponse and Undercoverage Adjustment

For each farm k in a state, let 

ak
(I) be the farm’s integerized nonresponse-adjusted (Census) weight

wk
(I) be the farm’s integerized coverage-adjusted (Census) weight, and 

ck be the farm’s corrected nonresponse-adjusted (Census) weight.

The last value, ck, is identical to ak
(I) for all Census records except (possibly)

screener-nonrespondent/census-respondents.  Let q be the number of census forms

mailed to screener-nonrespondents in the state divided by the number of those forms

returned and valid (including valid out of scopes).   For a screener-nonrespondent/

census-respondent k in this state, ck is set equal to q. 

The ck that are greater than the corresponding ak
(I) need to be integerized.   To

that end,  put the records in the state for which cj > aj
(I) into a data set.  Sort them by land

in farm and then run the re-integerization routine (see pages A7 - A9) on them with

respect to the integerization of the corresponding wk (the pre-integerized coverage-

adjusted weight for j).  Call the resulting integerized weight for k, ck
(I).   (When cj = aj

(I), 

cj
(I) = cj.)

The corrected nonresponse adjustment expressed as a fraction of a state

coverage-adjusted total, T = 3 wk
(I)yk (the summation is over all Census records in the

state),  is computed as 

PC_NR = 3 (ck
(I) ! 1)yk / 3 wk

(I)yk.                                                                                      (E1)

The corrected coverage adjustment expressed as a fraction of a state coverage-

adjusted total, T = 3 wk
(I)yk, is computed as 

PC_Cov = 3 (wk
(I) ! ck

(I))yk / 3 wk
(I)yk.                                                                                 (E2)
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The attributed nonresponse adjustment expressed as a fraction of a state

coverage-adjusted total, T = 3 wk
(I)yk, is computed as 

PA_NR = 3 (ak
(I) ! 1k)yk / 3 wk

(I)yk.                                                                                     (E3)

The attributed coverage adjustment expressed as a fraction of a state coverage-

adjusted total, T = 3 wk
(I)yk, is computed as 

PA_Cov = 3 (wk
(I) ! ak)yk / 3 wk

(I)yk.                                                                                   (E4)

The “attributed” fractions refer to how the missing records are  attributed to the

total.  That is to say, screener-nonrespondent/census-nonrespondents is handled

through the coverage adjustment rather than the nonresponse adjustment. 

In contrast to this, the “corrected” fractions acknowledge that screener

nonrespondents were indeed mailed census forms.  Some screener norespondents

chose to respond to the Census.  Others did not.   A correct measure of nonresponse

recognizes this.

Fractions can be multiplied by 100 to be converted into percentage form.   

Corrected numbers (from equations (E1) and (E2)) are computed at the US and state

level.  US-level corrected numbers are displayed in Table A of

http://www.nass.usda.gov/census/census02/volume1/us/us2appxc.pdf,  

what we have called Appendix C.    Corrected numbers for each state are displayed in

Table A of http://www.nass.usda.gov/census/census02/volume1/$$/$$2appxc.pdf

(replacing the “$$” with the appropriate state abbreviation).    

Table C displays attributed numbers (from equations (E3) and (E4)) at state level

in the US-level Appendix C and the county level in a state Appendix C.  
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http://www.nass.usda.gov/census
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